Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{\mathbf{(x + 1}\mathbf{)}^{\mathbf{2}}}{\mathbf{x(}\mathbf{x}^{\mathbf{2}}\mathbf...

(x+1)2x(x2+1)dx\int_{}^{}{\frac{\mathbf{(x + 1}\mathbf{)}^{\mathbf{2}}}{\mathbf{x(}\mathbf{x}^{\mathbf{2}}\mathbf{+ 1)}}\mathbf{dx}}is equal to

A

secxx+c\sec x - x + c

B

elog(sinx)dx=\int_{}^{}{e^{\log(\sin x)}dx =}

C

sinx+c\sin x + c

D

cosx+c- \cos x + c

Answer

elog(sinx)dx=\int_{}^{}{e^{\log(\sin x)}dx =}

Explanation

Solution

(x+1)2x(x2+1)dx=x2+1+2xx((x2+1)dx=x2+1x(x2+1)dx+2xx(x2+1)dx=dxx+2dxx2+1=logex+2tan1x+c\int_{}^{}{\frac{(x + 1)^{2}}{x(x^{2} + 1)}dx =}\int_{}^{}{\frac{x^{2} + 1 + 2x}{x((x^{2} + 1)}dx} = \int_{}^{}{\frac{x^{2} + 1}{x(x^{2} + 1)}dx + 2\int_{}^{}{\frac{x}{x(x^{2} + 1)}dx}} = \int_{}^{}{\frac{dx}{x} + 2}\int_{}^{}{\frac{dx}{x^{2} + 1} = \log_{e}x + 2\tan^{- 1}x} + c