Question
Question: \[\int_{}^{}\frac{\mathbf{\tan}\mathbf{\varphi}\mathbf{+}\mathbf{\tan}^{\mathbf{3}}\mathbf{\varphi}}...
∫1+tan3φtanφ+tan3φdφ
31log∣1+tanφ∣+61log∣tan2φ−tanφ+1∣+31tan−1(32tanφ−1)+c
3−1log∣1+tanφ∣+61log∣tan2φ−tanφ+1∣+31tan−1(32tanφ−1)+c
31log(tan3φ1+tan2φ)+c
None of these
3−1log∣1+tanφ∣+61log∣tan2φ−tanφ+1∣+31tan−1(32tanφ−1)+c
Solution
Let I=∫1+tan3φtanφ+tan3φdφ=∫1+tan3φtanφ(1+tan2φ)
⇒ I=∫1+tan3φtanφsec2φdφ
Putting tanφ=t⇒sec2⥂φdφ=dt, we have,
I=∫1+t3tdt=∫(1+t)(1−t+t2)tdtLet (1+t)(1−t+t2)t=1+tA+1−t+t2Bt+C⇒ t=A(1−t+t2)+(Bt+C)(1+t) ......(i)
Putting t=−1 in equation (i), we get,
−1=A(1+1+1)⇒A=−31
Comparing the coefficients of t2 and constant terms on both the sides of equation (i) we get
0=A+B⇒B=−A=31 and 0=A+C⇒C=−A=31
∴ (1+t)(1−t+t2)t=−31.1+r1+31.1−t+t2t+1
Hence, I=−31∫1+tdt+31∫t2−t+1t+1dt
=−31∫1+tdt+61∫t2−t+12t+2dt =−31∫1+tdt+61∫t2−t+1(2t−1)+3dt
=−31∫1+tdt+61∫t2−t+12t−1dt+63.∫t2−t+1dt =−31∫1+tdt+61∫t2−t+12t−1dt+21∫(t−21)2+43dt=−31log∣1+t∣+61log∣t2−t+1∣+21.32tan−1(23t−21)+c=−31log∣1+t∣+61log∣t2−t+1∣+31tan−1(32t−1)+c =−31log∣1+tanφ∣+61log∣tan2φ−tanφ+1∣+31tan−1(32tanφ−1)+c.