Solveeit Logo

Question

Question: \[\int_{}^{}\frac{\mathbf{\sin}^{\mathbf{3}}\mathbf{2}\mathbf{x}}{\mathbf{\cos}^{\mathbf{5}}\mathbf{...

sin32xcos52xdx=\int_{}^{}\frac{\mathbf{\sin}^{\mathbf{3}}\mathbf{2}\mathbf{x}}{\mathbf{\cos}^{\mathbf{5}}\mathbf{2}\mathbf{x}}\mathbf{dx =}

A

tan4x+c\tan^{4}x + c

B

tan4x+c\tan 4x + c

C

tan42x+x+c\tan^{4}2x + x + c

D

18tan42x+c\frac{1}{8}\tan^{4}2x + c

Answer

18tan42x+c\frac{1}{8}\tan^{4}2x + c

Explanation

Solution

Given, I=sin32xcos52xdxI = \int_{}^{}{\frac{\sin^{3}2x}{\cos^{5}2x}dx}. The given equation may be written as sin32xcos32x.1cos22xdx=tan32x.sec22xdx.\int_{}^{}{\frac{\sin^{3}2x}{\cos^{3}2x}.\frac{1}{\cos^{2}2x}dx} = \int_{}^{}{\tan^{3}2x.\sec^{2}2xdx.}

Put tan2x=t\tan 2x = t and 2sec22xdx=dt2\sec^{2}2xdx = dt

I=12t3dt=t48+c=tan42x8+c.I = - \frac{1}{2}\int_{}^{}{t^{3}dt = \frac{t^{4}}{8} + c} = \frac{\tan^{4}2x}{8} + c.