Question
Question: \[\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{x(}\mathbf{x}^{\mathbf{n}}\mathbf{+ 1)}}\mathbf{=}}\]...
∫x(xn+1)dx=
A
n1logxn+1xn+c
B
nlogxnxn+1+c
C
n−1logxn+1xn+c
D
−nlogxnxn+1+c
Answer
n1logxn+1xn+c
Explanation
Solution
Let I= ∫x(xn+1)dx=∫xn(xn+1)xn−1dx
Putting xn=t⇒nxn−1dx=dt, we have
I=n1∫t(t+1)dt=n1∫[t1−t+11]dt, (by resolving into partial fractions)
=n1[logt−log(t+1)]+c =n1logt+1t+c=n1logxn+1xn+c.