Solveeit Logo

Question

Question: \[\int_{}^{}\frac{\mathbf{dx}}{\mathbf{(x}\mathbf{-}\mathbf{3)}\sqrt{\mathbf{x + 1}}}\mathbf{=}\]...

dx(x3)x+1=\int_{}^{}\frac{\mathbf{dx}}{\mathbf{(x}\mathbf{-}\mathbf{3)}\sqrt{\mathbf{x + 1}}}\mathbf{=}

A

12log(x+1+2x+12)+c\frac{1}{2}\log\left( \frac{\sqrt{x + 1} + 2}{\sqrt{x + 1} - 2} \right) + c

B

12log(x+1+2x+12)+c\frac{1}{2}\log\left( \frac{\sqrt{x + 1} + 2}{\sqrt{x + 1} - 2} \right) + c

C

12log(x+12x+1+2)+c\frac{1}{2}\log\left( \frac{\sqrt{x + 1} - 2}{\sqrt{x + 1} + 2} \right) + c

D

None of these

Answer

12log(x+12x+1+2)+c\frac{1}{2}\log\left( \frac{\sqrt{x + 1} - 2}{\sqrt{x + 1} + 2} \right) + c

Explanation

Solution

Put x+1=t2x + 1 = t^{2} dx=2tdt\Rightarrow dx = 2tdt

dx(x3)x+1=2tdt(t24)t\int_{}^{}\frac{dx}{(x - 3)\sqrt{x + 1}} = \int_{}^{}\frac{2tdt}{(t^{2} - 4)t} (x+1=t2x=t21x3=t24)\left( \because x + 1 = t^{2} \Rightarrow x = t^{2} - 1 \Rightarrow x - 3 = t^{2} - 4 \right)

=2dtt222= 2\int_{}^{}\frac{dt}{t^{2} - 2^{2}} =2.12.2log(t2t+2)+c=12log(x+12x+1+2)+c= 2.\frac{1}{2.2}\log\left( \frac{t - 2}{t + 2} \right) + c = \frac{1}{2}\log\left( \frac{\sqrt{x + 1} - 2}{\sqrt{x + 1} + 2} \right) + c.