Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\mathbf{dx}}{\mathbf{(x + 1)}\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{1}}}\)...

dx(x+1)x21\int_{}^{}\frac{\mathbf{dx}}{\mathbf{(x + 1)}\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{1}}} is equal to

A

x+1x1\sqrt{\frac{\mathbf{x + 1}}{\mathbf{x - 1}}}+ c

B

2x1x+1\mathbf{2}\sqrt{\frac{\mathbf{x}\mathbf{-}\mathbf{1}}{\mathbf{x + 1}}} + c

C

x1x+1\sqrt{\frac{\mathbf{x - 1}}{\mathbf{x + 1}}}+ c

D

2x+1x1\mathbf{2}\sqrt{\frac{\mathbf{x + 1}}{\mathbf{x}\mathbf{-}\mathbf{1}}}+ c

Answer

x1x+1\sqrt{\frac{\mathbf{x - 1}}{\mathbf{x + 1}}}+ c

Explanation

Solution

dx(x+1)3/2(x1)1/2=dx(x1x+1)1/2(x+1)2\int \frac { d x } { ( x + 1 ) ^ { 3 / 2 } ( x - 1 ) ^ { 1 / 2 } } = \int \frac { d x } { \left( \frac { x - 1 } { x + 1 } \right) ^ { 1 / 2 } ( x + 1 ) ^ { 2 } } put x1x+1\frac{x - 1}{x + 1}= t