Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{(}\mathbf{e}^{\mathbf{x}}\mathbf{+}\mathbf{e}^{\mathbf{-}\ma...

dx(ex+ex)2=\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{(}\mathbf{e}^{\mathbf{x}}\mathbf{+}\mathbf{e}^{\mathbf{-}\mathbf{x}}\mathbf{)}^{\mathbf{2}}}\mathbf{=}}

A

tanhx+c\tan hx + c

B

12tanhx+c\frac{1}{2}\tan hx + c

C

14tanhx+c\frac{1}{4}\tan hx + c

D

None of these

Answer

14tanhx+c\frac{1}{4}\tan hx + c

Explanation

Solution

dx(ex+ex)2=144.dx(ex+ex)2=14sech2xdx=14tanhx+c.\int_{}^{}\frac{dx}{(e^{x} + e^{- x})^{2}} = \frac{1}{4}\int_{}^{}\frac{4.dx}{(e^{x} + e^{- x})^{2}} = \frac{1}{4}\int_{}^{}{\sec h^{2}x}dx = \frac{1}{4}\tan ⥂ hx + c.