Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{2}\sqrt{\mathbf{x}}\mathbf{(1 + x)}}\mathbf{=}}\]...

dx2x(1+x)=\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{2}\sqrt{\mathbf{x}}\mathbf{(1 + x)}}\mathbf{=}}

A

12tan1(x)+c\frac{1}{2}\tan^{- 1}(\sqrt{x}) + c

B

tan1(x)+C\tan^{- 1}(\sqrt{x}) + C

C

2tan1(x)+C2\tan^{- 1}(\sqrt{x}) + C

D

None of these

Answer

tan1(x)+C\tan^{- 1}(\sqrt{x}) + C

Explanation

Solution

I=dx2x(1+x),I = \int_{}^{}\frac{dx}{2\sqrt{x}(1 + x)}, put x=t\sqrt{x} = t 12xdx=dt\Rightarrow \frac{1}{2\sqrt{x}}dx = dt

I=dt1+t2=tan1t+c=tan1x+c\therefore I = \int_{}^{}\frac{dt}{1 + t^{2}} = \tan^{- 1}t + c = \tan^{- 1}\sqrt{x} + c