Solveeit Logo

Question

Question: \[\int_{}^{}\frac{\mathbf{dx}}{\mathbf{(2}\mathbf{\sin}\mathbf{x}\mathbf{+}\mathbf{\cos}\mathbf{x}\m...

dx(2sinx+cosx)2\int_{}^{}\frac{\mathbf{dx}}{\mathbf{(2}\mathbf{\sin}\mathbf{x}\mathbf{+}\mathbf{\cos}\mathbf{x}\mathbf{)}^{\mathbf{2}}}

A

12(12tanx+1)\frac{1}{2}\left( \frac{1}{2\tan x + 1} \right)

B

12log(2tanx+1)+c\frac{1}{2}\log(2\tan x + 1) + c

C

12+cotx+c\frac{1}{2 + \cot x} + c

D

12(12tanx1)+c- \frac{1}{2}\left( \frac{1}{2\tan x - 1} \right) + c

Answer

12+cotx+c\frac{1}{2 + \cot x} + c

Explanation

Solution

dx(2sinx+cosx)2=dxsin2x(2+cotx)2\int_{}^{}{\frac{dx}{(2\sin x + \cos x)^{2}} = \int_{}^{}\frac{dx}{\sin^{2}x(2 + \cot x)^{2}}} =cosec2xdx(2+cotx)2= \int_{}^{}\frac{\cos ⥂ ec^{2}xdx}{(2 + \cot x)^{2}}

Put (2+cotx)=tcosec2xdx=dt(2 + \cot x) = t \Rightarrow - \cos ⥂ ec^{2}xdx = dt

=dtt2=1t+c= \int_{}^{}{\frac{- dt}{t^{2}} = \frac{1}{t} + c} =12+cotx+c= \frac{1}{2 + \cot x} + c