Solveeit Logo

Question

Question: \[\int_{}^{}\frac{\mathbf{dx}}{\mathbf{1}\mathbf{-}\mathbf{\cos}\mathbf{x}\mathbf{-}\mathbf{\sin}\ma...

dx1cosxsinx=\int_{}^{}\frac{\mathbf{dx}}{\mathbf{1}\mathbf{-}\mathbf{\cos}\mathbf{x}\mathbf{-}\mathbf{\sin}\mathbf{x}}\mathbf{=}

A

log1+cotx2+c\log\left| 1 + \cot\frac{x}{2} \right| + c

B

log1tanx2+c\log\left| 1 - \tan\frac{x}{2} \right| + c

C

log1cotx2+c\log\left| 1 - \cot\frac{x}{2} \right| + c

D

log1+tanx2+c\log\left| 1 + \tan\frac{x}{2} \right| + c

Answer

log1cotx2+c\log\left| 1 - \cot\frac{x}{2} \right| + c

Explanation

Solution

Given I=dx1cosxsinxI = \int_{}^{}\frac{dx}{1 - \cos x - \sin x}

I=dx1(1tan2x/2)(1+tan2x/2)2tanx/21+tan2x/2I = \int \frac { d x } { 1 - \frac { \left( 1 - \tan ^ { 2 } x / 2 \right) } { \left( 1 + \tan ^ { 2 } x / 2 \right) } - \frac { 2 \tan x / 2 } { 1 + \tan ^ { 2 } x / 2 } } I=sec2x/2.dx1+tan2x/21+tan2x/22tanx/2I=sec2x/2.dx2tan2x/22tanx/2\Rightarrow I = \int_{}^{}\frac{\sec^{2}x/2.dx}{1 + \tan^{2}x/2 - 1 + \tan^{2}x/2 - 2\tan x/2}I = \int_{}^{}\frac{\sec^{2}x/2.dx}{2\tan^{2}x/2 - 2\tan x/2} 1/2.sec2x/2.dxtan2x/2tanx/2\Rightarrow \int_{}^{}\frac{1/2.\sec^{2}x/2.dx}{\tan^{2}x/2 - \tan x/2}

Put tanx/2=t\tan x/2 = t 12sec2x/2.dx=dt\Rightarrow \frac{1}{2}\sec^{2}x/2.dx = dt therefore I=dtt2tI = \int_{}^{}\frac{dt}{t^{2} - t} I=dtt(t1)\Rightarrow I = \int_{}^{}\frac{dt}{t(t - 1)} [1t+1t1]dtI=dtt1dtt\Rightarrow \int_{}^{}\left\lbrack - \frac{1}{t} + \frac{1}{t - 1} \right\rbrack dt \Rightarrow I = \int_{}^{}\frac{dt}{t - 1} - \int_{}^{}\frac{dt}{t}

I=log(t1)logt+cI = \log(t - 1) - \log t + c

I=logt1t+c\Rightarrow I = \log\left| \frac{t - 1}{t} \right| + c

I=logtanx/21tanx/2+c\Rightarrow I = \log\left| \frac{\tan x/2 - 1}{\tan x/2} \right| + c I=log1cotx/2+c\Rightarrow I = \log\left| 1 - \cot x/2 \right| + c