Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{1 +}\mathbf{e}^{\mathbf{x}}}\mathbf{=}}\]...

dx1+ex=\int_{}^{}{\frac{\mathbf{dx}}{\mathbf{1 +}\mathbf{e}^{\mathbf{x}}}\mathbf{=}}

A

log(1+ex)\log(1 + e^{x})

B

log(1+ex)- \log(1 + e^{- x})

C

log(1ex)- \log(1 - e^{- x})

D

log(ex+e2x)\log(e^{- x} + e^{- 2x})

Answer

log(1+ex)- \log(1 + e^{- x})

Explanation

Solution

I=dx1+ex=exex+1dx\int_{}^{}{\frac{dx}{1 + e^{x}} = \int_{}^{}{\frac{e^{- x}}{e^{- x} + 1}dx}}, Put ex+1=te^{- x} + 1 = texdx=dt- e^{- x}dx = dt ⇒ I=dtt=logt= - \int_{}^{}\frac{dt}{t} = - \log t =log(1+ex)= - \log(1 + e^{- x})