Question
Question: \[\int_{}^{}{\frac{\mathbf{\cos}\mathbf{x}\mathbf{dx}}{\mathbf{\cos}\mathbf{3}\mathbf{x}}\mathbf{=}}...
∫cos3xcosxdx=
A
231log1−3tanx1+3tanx+c
B
23−1log1−3tanx1+3tanx+c
C
61tan−1(3tanx)+c
D
None of these
Answer
231log1−3tanx1+3tanx+c
Explanation
Solution
Let I=∫cos3xcosxdx=∫4cos3x−3cosxcosxdxDividing the numerator and denominator by cos2x, we have I =∫4cos2x−3dx
I=∫1−3t2dt=31∫31−t2dt=31∫(31)2−t2dt=31.2.311log31−t31+t+c=231log1−3t1+3t+c
I =231log1−3tanx1+3tanx+c.