Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\mathbf{\cos}\mathbf{x}\mathbf{-}\mathbf{\sin}\mathbf{x}}{\sqrt{\mathbf{\sin}\math...

cosxsinxsin2xdx\int_{}^{}\frac{\mathbf{\cos}\mathbf{x}\mathbf{-}\mathbf{\sin}\mathbf{x}}{\sqrt{\mathbf{\sin}\mathbf{2}\mathbf{x}}}\mathbf{dx}equals

A

cosh1(sinx+cosx)+c\cos h^{- 1}(\sin x + \cos x) + c

B

sinh1(sinx+cosx)+c\sin h^{- 1}(\sin x + \cos x) + c

C

cosh1(sinx+cosx)+c- \cos h^{- 1}(\sin x + \cos x) + c

D

sinh1(sinx+cosx)+c- \sin h^{- 1}(\sin x + \cos x) + c

Answer

cosh1(sinx+cosx)+c\cos h^{- 1}(\sin x + \cos x) + c

Explanation

Solution

I=cosxsinxsin2xdxI = \int \frac { \cos x - \sin x } { \sqrt { \sin 2 x } } d x

=cosxsinx1+sin2x1dx= \int \frac { \cos x - \sin x } { \sqrt { 1 + \sin 2 x - 1 } } d x =cosxsinx(cosx+sinx)21dx= \int_{}^{}{\frac{\cos x - \sin x}{\sqrt{(\cos x + \sin x)^{2} - 1}}dx}

Put cosx+sinx=t\cos x + \sin x = t (cosxsinx)dx=dt\Rightarrow (\cos x - \sin x)dx = dt

dtt21=cosh1t+c=cosh1(sinx+cosx)+c\Rightarrow \int \frac { d t } { \sqrt { t ^ { 2 } - 1 } } = \cos h ^ { - 1 } t + c = \cos h ^ { - 1 } ( \sin x + \cos x ) + c