Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\mathbf{a}\mathbf{x}^{\mathbf{3}}\mathbf{+ b}\mathbf{x}^{\mathbf{2}}\mathbf{+ c}}{...

ax3+bx2+cx4dx\int_{}^{}\frac{\mathbf{a}\mathbf{x}^{\mathbf{3}}\mathbf{+ b}\mathbf{x}^{\mathbf{2}}\mathbf{+ c}}{\mathbf{x}^{\mathbf{4}}}\mathbf{dx}equals to

A

alogx+bx2+c3x3+ka\log x + \frac{b}{x^{2}} + \frac{c}{3x^{3}} + k

B

alogx+bxc3x3+ka\log x + \frac{b}{x} - \frac{c}{3x^{3}} + k

C

alogxbxc3x3+ca\log x - \frac{b}{x} - \frac{c}{3x^{3}} + c

D

None of these

Answer

alogxbxc3x3+ca\log x - \frac{b}{x} - \frac{c}{3x^{3}} + c

Explanation

Solution

I=ax3+bx2+cx4dx=[ax+bx2+cx4]dxI = \int_{}^{}\frac{ax^{3} + bx^{2} + c}{x^{4}}dx = \int_{}^{}{\left\lbrack \frac{a}{x} + \frac{b}{x^{2}} + \frac{c}{x^{4}} \right\rbrack dx} =alogxbxc3x3+c= a\log x - \frac{b}{x} - \frac{c}{3x^{3}} + c