Question
Question: \(\int_{}^{}{\frac{\mathbf{5}\mathbf{-}\mathbf{2x}}{\sqrt{\mathbf{6 + x}\mathbf{-}\mathbf{x}^{\mathb...
∫6+x−x25−2xdx =
A
26+x−x2−4sin−1(52x−1)+c
B
26+x−x2+4sin−1(52x−1)+c
C
−26+x−x2−4sin−1(52x−1)+c
D
−26+x−x2+4sin−1(52x−1)+c
Answer
26+x−x2+4sin−1(52x−1)+c
Explanation
Solution
I=∫6+x−x25−2xdx
Let 5−2x=Mdxd(6+x−x2)+N ⇒5−2x=M(1−2x)+N
Equating the coefficients of x and constant terms on both sides, we get
−2=−2M⇒M=1 and 5=M+N⇒N=5−1=4
∴5−2x=(1−2x)+4
Hence,
I=∫6+x−x2(1−2x)+4dx =∫6+x−x21−2xdx+4∫6+x−x2dx =I1+4I2, (say)
Now, I1=∫6+x−x21−2xdx
Putting 6+x−x2=t⇒(1−2x)dx=dt, we have,
I1=∫tdt=2t+C1=26+x−x2+C1
andI2=∫6+x−x2dx=∫6−(x2−x)dx
I=∫6−(x2−x+41)+41dx=∫425−(x−21)2dx=∫(25)2−u2du (where, u=x−21)
=sin−1(5/2u)+C2=sin−1[52(x−21)]+C2=sin−1(52x−1)+C2∴I=I1+4I2=26+x−x2+4sin−1(52x−1)+C (where, C=C1+4C2)