Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{\mathbf{5}\mathbf{-}\mathbf{2x}}{\sqrt{\mathbf{6 + x}\mathbf{-}\mathbf{x}^{\mathb...

52x6+xx2dx\int_{}^{}{\frac{\mathbf{5}\mathbf{-}\mathbf{2x}}{\sqrt{\mathbf{6 + x}\mathbf{-}\mathbf{x}^{\mathbf{2}}}}\mathbf{dx}} =

A

26+xx24sin1(2x15)+c2\sqrt{6 + x - x^{2}} - 4\sin^{- 1}\left( \frac{2x - 1}{5} \right) + c

B

26+xx2+4sin1(2x15)+c2\sqrt{6 + x - x^{2}} + 4\sin^{- 1}\left( \frac{2x - 1}{5} \right) + c

C

26+xx24sin1(2x15)+c- 2\sqrt{6 + x - x^{2}} - 4\sin^{- 1}\left( \frac{2x - 1}{5} \right) + c

D

26+xx2+4sin1(2x15)+c- 2\sqrt{6 + x - x^{2}} + 4\sin^{- 1}\left( \frac{2x - 1}{5} \right) + c

Answer

26+xx2+4sin1(2x15)+c2\sqrt{6 + x - x^{2}} + 4\sin^{- 1}\left( \frac{2x - 1}{5} \right) + c

Explanation

Solution

I=52x6+xx2dxI = \int_{}^{}{\frac{5 - 2x}{\sqrt{6 + x - x^{2}}}dx}

Let 52x=Mddx(6+xx2)+N5 - 2x = M\frac{d}{dx}(6 + x - x^{2}) + N 52x=M(12x)+N\Rightarrow 5 - 2x = M(1 - 2x) + N

Equating the coefficients of x and constant terms on both sides, we get

2=2MM=1- 2 = - 2M \Rightarrow M = 1 and 5=M+NN=51=45 = M + N \Rightarrow N = 5 - 1 = 4

52x=(12x)+4\therefore 5 - 2x = (1 - 2x) + 4

Hence,

I=(12x)+46+xx2dxI = \int_{}^{}{\frac{(1 - 2x) + 4}{\sqrt{6 + x - x^{2}}}dx} =12x6+xx2dx+4dx6+xx2= \int_{}^{}{\frac{1 - 2x}{\sqrt{6 + x - x^{2}}}dx + 4\int_{}^{}\frac{dx}{\sqrt{6 + x - x^{2}}}} =I1+4I2,= I_{1} + 4I_{2}, (say)

Now, I1=12x6+xx2dxI_{1} = \int_{}^{}{\frac{1 - 2x}{\sqrt{6 + x - x^{2}}}dx}

Putting 6+xx2=t(12x)dx=dt,6 + x - x^{2} = t \Rightarrow (1 - 2x)dx = dt, we have,

I1=dtt=2t+C1=26+xx2+C1I_{1} = \int_{}^{}{\frac{dt}{\sqrt{t}} = 2\sqrt{t} + C_{1} = 2\sqrt{6 + x - x^{2}} + C_{1}}

andI2=dx6+xx2=dx6(x2x)I_{2} = \int_{}^{}{\frac{dx}{\sqrt{6 + x - x^{2}}} = \int_{}^{}\frac{dx}{\sqrt{6 - (x^{2} - x)}}}

I=dx6(x2x+14)+14=dx254(x12)2=du(52)2u2I = \int_{}^{}{\frac{dx}{\sqrt{6 - \left( x^{2} - x + \frac{1}{4} \right) + \frac{1}{4}}} = \int_{}^{}\frac{dx}{\sqrt{\frac{25}{4} - \left( x - \frac{1}{2} \right)^{2}}}} = \int_{}^{}\frac{du}{\sqrt{\left( \frac{5}{2} \right)^{2} - u^{2}}} (where, u=x12)\left( \text{where, }u = x - \frac{1}{2} \right)

=sin1(u5/2)+C2=sin1[25(x12)]+C2=sin1(2x15)+C2I=I1+4I2=26+xx2+4sin1(2x15)+C= \sin^{- 1}\left( \frac{u}{5/2} \right) + C_{2} = \sin^{- 1}\left\lbrack \frac{2}{5}\left( x - \frac{1}{2} \right) \right\rbrack + C_{2} = \sin^{- 1}\left( \frac{2x - 1}{5} \right) + C_{2}\therefore I = I_{1} + 4I_{2} = 2\sqrt{6 + x - x^{2}} + 4\sin^{- 1}\left( \frac{2x - 1}{5} \right) + C (where, C=C1+4C2)(\text{where, C} = C_{1} + 4C_{2})