Question
Question: \[\int_{}^{}\frac{\mathbf{3}\mathbf{\cos}\mathbf{x}\mathbf{+ 3}\mathbf{\sin}\mathbf{x}}{\mathbf{4}\m...
∫4sinx+5cosx3cosx+3sinxdx=
A
4127x−413log(4sinx+5cosx)+c
B
4127x+413log(4sinx+5cosx)+c
C
4127x−413log(4sinx−5cosx)+c
D
None of these
Answer
4127x−413log(4sinx+5cosx)+c
Explanation
Solution
3cosx+3sinx=Mdxd(4sinx+5cosx)+N(4sinx+5cosx)⇒3cosx+3sinx=M(4cosx−5sinx)+N(4sinx+5cosx)⇒ Comparing the coefficient of sinx and cosxon both sides.
⇒ −5M+4N=3 and 4M+5N=3 ⇒ M=41−3,N=4127
∴ I=∫4sinx+5cosx41−3(4cosx−5sinx)+4127(4sinx+5cosx)dx
⇒I=∫4127dx+(41−3)∫4sinx+5cosx4cosx−5sinxdx
⇒I=4127x−413log(4sinx+5cosx)+c.