Solveeit Logo

Question

Question: \[\int_{}^{}\frac{\mathbf{3}\mathbf{\cos}\mathbf{x}\mathbf{+ 3}\mathbf{\sin}\mathbf{x}}{\mathbf{4}\m...

3cosx+3sinx4sinx+5cosxdx=\int_{}^{}\frac{\mathbf{3}\mathbf{\cos}\mathbf{x}\mathbf{+ 3}\mathbf{\sin}\mathbf{x}}{\mathbf{4}\mathbf{\sin}\mathbf{x}\mathbf{+ 5}\mathbf{\cos}\mathbf{x}}\mathbf{dx =}

A

2741x341log(4sinx+5cosx)+c\frac{27}{41}x - \frac{3}{41}\log(4\sin x + 5\cos x) + c

B

2741x+341log(4sinx+5cosx)+c\frac{27}{41}x + \frac{3}{41}\log(4\sin x + 5\cos x) + c

C

2741x341log(4sinx5cosx)+c\frac{27}{41}x - \frac{3}{41}\log(4\sin x - 5\cos x) + c

D

None of these

Answer

2741x341log(4sinx+5cosx)+c\frac{27}{41}x - \frac{3}{41}\log(4\sin x + 5\cos x) + c

Explanation

Solution

3cosx+3sinx=Mddx(4sinx+5cosx)+N(4sinx+5cosx)3cosx+3sinx=M(4cosx5sinx)+N(4sinx+5cosx)\mathbf{3}\mathbf{\cos}\mathbf{x}\mathbf{+ 3}\mathbf{\sin}\mathbf{x}\mathbf{= M}\frac{\mathbf{d}}{\mathbf{dx}}\mathbf{(4}\mathbf{\sin}\mathbf{x}\mathbf{+ 5}\mathbf{\cos}\mathbf{x}\mathbf{) + N(4}\mathbf{\sin}\mathbf{x}\mathbf{+ 5}\mathbf{\cos}\mathbf{x}\mathbf{) \Rightarrow 3}\mathbf{\cos}\mathbf{x}\mathbf{+ 3}\mathbf{\sin}\mathbf{x}\mathbf{= M(4}\mathbf{\cos}\mathbf{x}\mathbf{- 5}\mathbf{\sin}\mathbf{x}\mathbf{) + N(4}\mathbf{\sin}\mathbf{x}\mathbf{+ 5}\mathbf{\cos}\mathbf{x}\mathbf{)} \Rightarrow Comparing the coefficient of sinx\sin x and cosx\cos xon both sides.

\Rightarrow 5M+4N=3- 5M + 4N = 3 and 4M+5N=34M + 5N = 3 \Rightarrow M=341,N=2741M = \frac{- 3}{41},N = \frac{27}{41}

\therefore I=341(4cosx5sinx)+2741(4sinx+5cosx)4sinx+5cosxdxI = \int_{}^{}\frac{\frac{- 3}{41}(4\cos x - 5\sin x) + \frac{27}{41}(4\sin x + 5\cos x)}{4\sin x + 5\cos x}dx

I=2741dx+(341)4cosx5sinx4sinx+5cosxdx\Rightarrow I = \int_{}^{}{\frac{27}{41}dx + \left( \frac{- 3}{41} \right)}\int_{}^{}\frac{4\cos x - 5\sin x}{4\sin x + 5\cos x}dx

I=2741x341log(4sinx+5cosx)+c\Rightarrow I = \frac{27}{41}x - \frac{3}{41}\log(4\sin x + 5\cos x) + c.