Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\log(x + 1)–\log x}{x(x + 1)}\) dx is equal to –...

log(x+1)logxx(x+1)\int_{}^{}\frac{\log(x + 1)–\log x}{x(x + 1)} dx is equal to –

A

12[log(x+1x)]2+C–\frac{1}{2}\left\lbrack \log\left( \frac{x + 1}{x} \right) \right\rbrack^{2} + C

B

C – [{log (x + 1)}2 – (log x)2]

C

log[log(x+1x)]+C–\log\left\lbrack \log\left( \frac{x + 1}{x} \right) \right\rbrack + C

D

– log (x+1x)\left( \frac{x + 1}{x} \right)+ C

Answer

12[log(x+1x)]2+C–\frac{1}{2}\left\lbrack \log\left( \frac{x + 1}{x} \right) \right\rbrack^{2} + C

Explanation

Solution

Put log (x + 1) – log x = t

̃ ̃ x(x+1)x(x+1)=dtdx\frac{x–(x + 1)}{x(x + 1)} = \frac{dt}{dx}

̃ = dt̃ dxx(x+1)\frac{dx}{x(x + 1)} = – dt

so question becomes

\intt dt = – t22+C\frac{t^{2}}{2} + C