Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{e^{x}\left( 1 + \sin x \right)}{1 + \cos x}dx}\)is equal to...

ex(1+sinx)1+cosxdx\int_{}^{}{\frac{e^{x}\left( 1 + \sin x \right)}{1 + \cos x}dx}is equal to

A

logtanx+C\log|\tan x| + C

B

extan(x2)+Ce^{x}\tan\left( \frac{x}{2} \right) + C

C

sinexcotx+C\sin e^{x}\cot x + C

D

excotx+Ce^{x}\cot x + C

Answer

extan(x2)+Ce^{x}\tan\left( \frac{x}{2} \right) + C

Explanation

Solution

ex(1+sinx)1+cosxdx\int_{}^{}{\frac{e^{x}\left( 1 + \sin x \right)}{1 + \cos x}dx}= ex[1+2sin(x2)cos(x2)]2cos2(x2)dx\int_{}^{}{\frac{e^{x}\left\lbrack 1 + 2\sin\left( \frac{x}{2} \right)\cos\left( \frac{x}{2} \right) \right\rbrack}{2\cos^{2}\left( \frac{x}{2} \right)}dx}

= ex(12sec2x2+tanx2)dx=12exsec2x2dx+extanx2dx\int_{}^{}{e^{x}\left( \frac{1}{2}\sec^{2}\frac{x}{2} + \tan\frac{x}{2} \right)dx =}\frac{1}{2}\int_{}^{}{e^{x}\sec^{2}\frac{x}{2}dx + \int_{}^{}{e^{x}\tan\frac{x}{2}dx}}

= 12exsec2x2+extanx212exsec2x2+C\frac{1}{2}\int_{}^{}{e^{x}\sec^{2}\frac{x}{2} + e^{x}\tan\frac{x}{2} - \frac{1}{2}\int_{}^{}{e^{x}\sec^{2}\frac{x}{2} + C}}

[integrating by parts]

=extanx2+C.= e^{x}\tan\frac{x}{2} + C.