Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{e^{\tan^{- 1}x}}{1 + x^{2}}dx =}\]...

etan1x1+x2dx=\int_{}^{}{\frac{e^{\tan^{- 1}x}}{1 + x^{2}}dx =}

A

log(1+x2)+c\log(1 + x^{2}) + c

B

logetan1x+c\log e^{\tan^{- 1}x} + c

C

etan1x+ce^{\tan^{- 1}x} + c

D

None of these

Answer

log(1+x2)+c\log(1 + x^{2}) + c

Explanation

Solution

4(sinx4cosx4)+c4\left( \sin\frac{x}{4} - \cos\frac{x}{4} \right) + c

Put 4(sinx4+cosx4)+c4\left( \sin\frac{x}{4} + \cos\frac{x}{4} \right) + c then it reduces to

sinx+cosx1+sin2x6mudx=\int_{}^{}{\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}}\mspace{6mu} dx =}