Solveeit Logo

Question

Question: \(\int_{}^{}\frac{e^{3x} + e^{x}}{e^{4x}–e^{2x} + 1}\) dx =...

e3x+exe4xe2x+1\int_{}^{}\frac{e^{3x} + e^{x}}{e^{4x}–e^{2x} + 1} dx =

A

tan–1 (ex – e–x) + c

B

tan–1 (ex + e–x) + c

C

2 tan–1 (ex – e–x) + c

D

2 tan–1 (ex + e–x) + c

Answer

tan–1 (ex – e–x) + c

Explanation

Solution

Put ex = t

̃ I = (t2+1)dtt4t2+1\int_{}^{}\frac{(t^{2} + 1)dt}{t^{4}–t^{2} + 1} = (1+1t2)dtt21+1t2\int_{}^{}\frac{\left( 1 + \frac{1}{t^{2}} \right)dt}{t^{2}–1 + \frac{1}{t^{2}}}

put t – 1t\frac{1}{t} = z