Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{e^{2\tan^{- 1}x}(1 + x)^{2}}{1 + x^{2}}dx =}\]...

e2tan1x(1+x)21+x2dx=\int_{}^{}{\frac{e^{2\tan^{- 1}x}(1 + x)^{2}}{1 + x^{2}}dx =}

A

xetan1x+cxe^{\tan^{- 1}x} + c

B

xe2tan1x+cxe^{2\tan^{- 1}x} + c

C

2xetan1x+c2xe^{\tan^{- 1}x} + c

D

None of these

Answer

xe2tan1x+cxe^{2\tan^{- 1}x} + c

Explanation

Solution

Put tan1x=t\tan^{- 1}x = t 11+x2dx=dt\Rightarrow \frac{1}{1 + x^{2}}dx = dt

I=e2tan1x(1+x)21+x2dx=e2t(1+tant)2dt\therefore I = \int_{}^{}\frac{e^{2\tan^{- 1}x}(1 + x)^{2}}{1 + x^{2}}dx = \int_{}^{}{e^{2t}(1 + \tan t)^{2}dt}=e2t(sec2t+2tant)dt\int_{}^{}{e^{2t}(\sec^{2}t + 2\tan t)dt} I=e2tsec2tdt+2[tante2t2sec2t.e2t2dt]I = \int_{}^{}{e^{2t}\sec^{2}tdt + 2\left\lbrack \tan t\frac{e^{2t}}{2} - \int_{}^{}{\sec^{2}t.\frac{e^{2t}}{2}dt} \right\rbrack}

I=e2tsec2tdt+e2ttante2tsec2tdt+cI=e2ttant+c\Rightarrow I = \int_{}^{}{e^{2t}\sec^{2}tdt + e^{2t}\tan t - \int_{}^{}{e^{2t}\sec^{2}tdt + c}}I = e^{2t}\tan t + c \Rightarrow I=xe2tan1x+cI = xe^{2\tan^{- 1}x} + c