Question
Question: \[\int_{}^{}{\frac{e^{2\tan^{- 1}x}(1 + x)^{2}}{1 + x^{2}}dx =}\]...
∫1+x2e2tan−1x(1+x)2dx=
A
xetan−1x+c
B
xe2tan−1x+c
C
2xetan−1x+c
D
None of these
Answer
xe2tan−1x+c
Explanation
Solution
Put tan−1x=t ⇒1+x21dx=dt
∴I=∫1+x2e2tan−1x(1+x)2dx=∫e2t(1+tant)2dt=∫e2t(sec2t+2tant)dt I=∫e2tsec2tdt+2[tant2e2t−∫sec2t.2e2tdt]
⇒I=∫e2tsec2tdt+e2ttant−∫e2tsec2tdt+cI=e2ttant+c ⇒ I=xe2tan−1x+c