Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{dx}{x\sqrt{1 - (\log x)^{2}}} =}\)...

dxx1(logx)2=\int_{}^{}{\frac{dx}{x\sqrt{1 - (\log x)^{2}}} =}

A

cos1(logx)+c\cos^{- 1}(\log x) + c

B

xlog(1x2)+cx\log(1 - x^{2}) + c

C

sin1(logx)+c\sin^{- 1}(\log x) + c

D

None of these

Answer

xlog(1x2)+cx\log(1 - x^{2}) + c

Explanation

Solution

1+x2+tan1x+c\sqrt{1 + x^{2}} + \tan^{- 1}x + c

1+x2log{x+1+x2}+c\sqrt{1 + x^{2}} - \log\{ x + \sqrt{1 + x^{2}}\} + c

1+x2+log{x+1+x2}+c\sqrt{1 + x^{2}} + \log\{ x + \sqrt{1 + x^{2}}\} + c

1+x2+log(secx+tanx)+c\sqrt{1 + x^{2}} + \log(\sec x + \tan x) + c.