Solveeit Logo

Question

Question: \(\int_{}^{}\frac{dx}{x(\log x)(\log{\log x})...\underset{8times}{\overset{(\log{{log...}x})}{︸}}}\)...

dxx(logx)(loglogx)...(loglog...x)8times\int_{}^{}\frac{dx}{x(\log x)(\log{\log x})...\underset{8times}{\overset{(\log{{log...}x})}{︸}}} is equal to –

A

(loglog...x)8times+C\underset{8times}{\overset{(\log{{log...}x})}{︸}} + C

B

(loglog...x)7times+C\underset{7times}{\overset{(\log{{log...}x})}{︸}} + C

C

(loglog...x)9times+C\underset{9times}{\overset{(\log{{log...}x})}{︸}} + C

D

None of these

Answer

(loglog...x)9times+C\underset{9times}{\overset{(\log{{log...}x})}{︸}} + C

Explanation

Solution

put loglog...x8times\underset{8times}{\overset{\log{{log...}x}}{︸}} = t

= = dt

I = dtt\int \frac { \mathrm { dt } } { \mathrm { t } } = log t + C = log (loglog...x)8times\underset{8times}{\overset{(\log{{log...}x})}{︸}} + C