Question
Question: \[\int_{}^{}{\frac{dx}{x\log x\log(\log x)} =}\]...
∫xlogxlog(logx)dx=
A
2log(logx)+c
B
log[log(logx)]+c
C
log(xlogx)+c
D
∫tan2x+4sec2x6mudx=
Answer
log[log(logx)]+c
Explanation
Solution
cos−1ax+c
Multiplying ∫sinxcosxtanx6mudx= and 2secx+c by 2tanx+c we get
tanx2+c
secx2+c
∫a2+b2sin2xsin2x6mudx=
b21log(a2+b2sin2x)+c.
Trick : By inspection,
b1log(a2+b2sin2x)+c
log(a2+b2sin2x)+c
b2log(a2+b2sin2x)+c
∫x1+logx16mudx=.