Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{dx}{x\log x\log(\log x)} =}\]...

dxxlogxlog(logx)=\int_{}^{}{\frac{dx}{x\log x\log(\log x)} =}

A

2log(logx)+c2\log(\log x) + c

B

log[log(logx)]+c\log\lbrack\log(\log x)\rbrack + c

C

log(xlogx)+c\log(x\log x) + c

D

sec2x6mudxtan2x+4=\int_{}^{}{\frac{\sec^{2}x\mspace{6mu} dx}{\sqrt{\tan^{2}x + 4}} =}

Answer

log[log(logx)]+c\log\lbrack\log(\log x)\rbrack + c

Explanation

Solution

cos1ax+c\cos^{- 1}a^{x} + c

Multiplying tanxsinxcosx6mudx=\int_{}^{}\frac{\sqrt{\tan x}}{\sin x\cos x}\mspace{6mu} dx = and 2secx+c2\sqrt{\sec x} + c by 2tanx+c2\sqrt{\tan x} + c we get

2tanx+c\frac{2}{\sqrt{\tan x}} + c

2secx+c\frac{2}{\sqrt{\sec x}} + c

sin2xa2+b2sin2x6mudx=\int_{}^{}\frac{\sin 2x}{a^{2} + b^{2}\sin^{2}x}\mspace{6mu} dx =

1b2log(a2+b2sin2x)+c\frac{1}{b^{2}}\log(a^{2} + b^{2}\sin^{2}x) + c.

Trick : By inspection,

1blog(a2+b2sin2x)+c\frac{1}{b}\log(a^{2} + b^{2}\sin^{2}x) + c

log(a2+b2sin2x)+c\log(a^{2} + b^{2}\sin^{2}x) + c

b2log(a2+b2sin2x)+cb^{2}\log(a^{2} + b^{2}\sin^{2}x) + c

1x1+logx6mudx=\int_{}^{}{\frac{1}{x\sqrt{1 + \log x}}\mspace{6mu} dx =}.