Solveeit Logo

Question

Question: \(\int_{}^{}\frac{dx}{\tan x + \cot x + \sec x + \cos ecx}\) =...

dxtanx+cotx+secx+cosecx\int_{}^{}\frac{dx}{\tan x + \cot x + \sec x + \cos ecx} =

A

12\frac{1}{2} (sin x – cos x) + c

B

12\frac{1}{2} (sin x – cos x – x) + c

C

12\frac{1}{2} (sin x – cos x + x) + c

D

None of these

Answer

12\frac{1}{2} (sin x – cos x – x) + c

Explanation

Solution

I = sinxcosxdx1+sinx+cosx\int \frac { \sin x \cos x d x } { 1 + \sin x + \cos x } ̃ sinxsecx+tanx+1\int_{}^{}\frac{\sin x}{\sec x + \tan x + 1}dx

I = sinx(1+tanxsecx)(1+tanx)2sec2x\int \frac { \sin x ( 1 + \tan x - \sec x ) } { ( 1 + \tan x ) ^ { 2 } - \sec ^ { 2 } x } dx

̃

I = 12\frac{1}{2} cosx(1+tanxsecx)\int_{}^{}{\cos x(1 + \tan x - \sec x)}dx

̃ 12\frac{1}{2} \int(cosx + sin x – 1) dx

= 12\frac{1}{2} [sin x – cos x – x] + c