Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{dx}{\sqrt{x^{2} - 4x + 2}} =}\]...

dxx24x+2=\int_{}^{}{\frac{dx}{\sqrt{x^{2} - 4x + 2}} =}

A

logx2+x2+24x+c\log|x - 2 + \sqrt{x^{2} + 2 - 4x}| + c

B

logx2x2+24x+c\log|x - 2 - \sqrt{x^{2} + 2 - 4x}| + c

C

logx2+x2+2+4x+c\log|x - 2 + \sqrt{x^{2} + 2 + 4x}| + c

D

logx2x2+2+4x+c\log|x - 2 - \sqrt{x^{2} + 2 + 4x}| + c

Answer

logx2+x2+24x+c\log|x - 2 + \sqrt{x^{2} + 2 - 4x}| + c

Explanation

Solution

I=dx(x2)22I = \int_{}^{}\frac{dx}{\sqrt{(x - 2)^{2} - 2}} I=dtt2(2)2\Rightarrow I = \int_{}^{}\frac{dt}{\sqrt{t^{2} - (\sqrt{2})^{2}}}

Put x2=tx - 2 = t dx=dt\Rightarrow dx = dt I=logt+t22+c\Rightarrow I = \log|t + \sqrt{t^{2} - 2}| + c

I=logx2+x24x+2+c\Rightarrow I = \log|x - 2 + \sqrt{x^{2} - 4x + 2}| + c