Question
Question: \[\int_{}^{}{\frac{dx}{\sin x + \cos x} =}\]...
∫sinx+cosxdx=
A
logtan(π/8+x/2)+c
B
logtan(π/8−x/2)+c
C
21logtan(π/8+x/2)+c
D
None of these
Answer
21logtan(π/8+x/2)+c
Explanation
Solution
∫1+tan2x/22tanx/2+1+tan2x/21−tan2x/2dx
⇒ ∫2tanx/2+1−tan2x/2sec2x/2dx
Put tanx/2=t ⇒21sec2x/2dx=dt
∴ I=2∫2t+1−t2dt=2∫2−(t2−2t+1)dt
⇒I=2∫(2)2−(t−1)2dt=222log2−t+12+t−1+c
⇒ I=21log[(2+1)−tanx/2][2−1][(2−1)+tanx/2][2−1]+c
⇒ I=21log1−(2−1)tanx/2tanπ/8+tanx/2+21log(2−1)+c
⇒ I=21logtan(π/8+x/2)+c1
where c1=21log(2−1)+c
Trick : I=21∫21sinx+21cosxdx=21∫sin(π/4+x)dx =21∫cosec(π/4+x)dx =21logtan(π/8+x/2)+c.