Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{dx}{\sin x + \cos x} =}\]...

dxsinx+cosx=\int_{}^{}{\frac{dx}{\sin x + \cos x} =}

A

logtan(π/8+x/2)+c{logtan}(\pi/8 + x/2) + c

B

logtan(π/8x/2)+c{logtan}(\pi/8 - x/2) + c

C

12logtan(π/8+x/2)+c\frac{1}{\sqrt{2}}{logtan}(\pi/8 + x/2) + c

D

None of these

Answer

12logtan(π/8+x/2)+c\frac{1}{\sqrt{2}}{logtan}(\pi/8 + x/2) + c

Explanation

Solution

dx2tanx/21+tan2x/2+1tan2x/21+tan2x/2\int_{}^{}\frac{dx}{\frac{2\tan x/2}{1 + \tan^{2}x/2} + \frac{1 - \tan^{2}x/2}{1 + \tan^{2}x/2}}

\Rightarrow sec2x/22tanx/2+1tan2x/2dx\int_{}^{}{\frac{\sec^{2}x/2}{2\tan x/2 + 1 - \tan^{2}x/2}dx}

Put tanx/2=t\tan x/2 = t 12sec2x/2dx=dt\Rightarrow \frac{1}{2}\sec^{2}x/2dx = dt

\therefore I=2dt2t+1t2=2dt2(t22t+1)I = 2\int_{}^{}\frac{dt}{2t + 1 - t^{2}} = 2\int_{}^{}\frac{dt}{2 - (t^{2} - 2t + 1)}

I=2dt(2)2(t1)2=222log2+t12t+1+c\Rightarrow I = 2\int_{}^{}\frac{dt}{(\sqrt{2})^{2} - (t - 1)^{2}} = \frac{2}{2\sqrt{2}}\log\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| + c

\Rightarrow I=12log[(21)+tanx/2][21][(2+1)tanx/2][21]+cI = \frac{1}{\sqrt{2}}\log\frac{\lbrack(\sqrt{2} - 1) + \tan x/2\rbrack\lbrack\sqrt{2} - 1\rbrack}{\lbrack(\sqrt{2} + 1) - \tan x/2\rbrack\lbrack\sqrt{2} - 1\rbrack} + c

\Rightarrow I=12logtanπ/8+tanx/21(21)tanx/2+12log(21)+cI = \frac{1}{\sqrt{2}}\log\frac{\tan\pi/8 + \tan x/2}{1 - (\sqrt{2} - 1)\tan x/2} + \frac{1}{\sqrt{2}}\log(\sqrt{2} - 1) + c

\Rightarrow I=12logtan(π/8+x/2)+c1I = \frac{1}{\sqrt{2}}{logtan}(\pi/8 + x/2) + c_{1}

where c1=12log(21)+cc_{1} = \frac{1}{\sqrt{2}}\log(\sqrt{2} - 1) + c

Trick : I=12dx12sinx+12cosx=12dxsin(π/4+x)I = \frac{1}{\sqrt{2}}\int_{}^{}\frac{dx}{\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x} = \frac{1}{\sqrt{2}}\int_{}^{}\frac{dx}{\sin(\pi/4 + x)} =12cosec(π/4+x)dx= \frac{1}{\sqrt{2}}\int_{}^{}\text{cosec}(\pi/4 + x)dx =12logtan(π/8+x/2)+c= \frac{1}{\sqrt{2}}{logtan}(\pi/8 + x/2) + c.