Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{dx}{e^{x} + e^{- x}} =}\)...

dxex+ex=\int_{}^{}{\frac{dx}{e^{x} + e^{- x}} =}

A

tan1(ex)\tan^{- 1}(e^{- x})

B

tan1(ex)\tan^{- 1}(e^{x})

C

log(exex)\log(e^{x} - e^{- x})

D

None of these

Answer

tan1(ex)\tan^{- 1}(e^{- x})

Explanation

Solution

Put 2axlog10a+c2a^{\sqrt{x}}\log_{10}a + c

2axloga10+c2a^{\sqrt{x}}\log_{a}10 + c then it reduces to

x31x8dx=\int_{}^{}{\frac{x^{3}}{\sqrt{1 - x^{8}}}dx =}