Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{dx}{e^{x} - 1} =}\)...

dxex1=\int_{}^{}{\frac{dx}{e^{x} - 1} =}

A

ln(1ex)+c\ln(1 - e^{- x}) + c

B

ln(1ex)+c- \ln(1 - e^{- x}) + c

C

ln(ex1)+c\ln(e^{x} - 1) + c

D

x2secx36mudx=\int_{}^{}{x^{2}\sec x^{3}\mspace{6mu} dx} =

Answer

ln(1ex)+c\ln(1 - e^{- x}) + c

Explanation

Solution

Put 2(secx+tanx)+c2(\sec x + \tan x) + c then

x51(tan1x+cot1x)6mudx=\int_{}^{}{x^{51}(\tan^{- 1}x + \cot^{- 1}x)\mspace{6mu} dx =}

x5252(tan1x+cot1x)+c\frac{x^{52}}{52}(\tan^{- 1}x + \cot^{- 1}x) + c.