Solveeit Logo

Question

Question: \(\int_{}^{}\frac{dx}{(a^{2} + x^{2})^{3/2}}\) is equal to...

dx(a2+x2)3/2\int_{}^{}\frac{dx}{(a^{2} + x^{2})^{3/2}} is equal to

A

x(a2+x2)1/2\frac{x}{(a^{2} + x^{2})^{1/2}} + c

B

xa2(a2+x2)1/2\frac{x}{a^{2}(a^{2} + x^{2})^{1/2}}+ c

C

1a2(a2+x2)1/2\frac{1}{a^{2}(a^{2} + x^{2})^{1/2}} + c

D

None of these

Answer

xa2(a2+x2)1/2\frac{x}{a^{2}(a^{2} + x^{2})^{1/2}}+ c

Explanation

Solution

I=dx(a2+x2)3/2I = \int_{}^{}\frac{dx}{(a^{2} + x^{2})^{3/2}}

Put x=atanθx = a\tan\theta dx=asec2θdθ\Rightarrow dx = a\sec^{2}\theta d\theta

I=asec2θdθ(a2+a2tan2θ)3/2\therefore I = \int_{}^{}\frac{a\sec^{2}\theta d\theta}{(a^{2} + a^{2}\tan^{2}\theta)^{3/2}} =asec2θdθa3(sec2θ)3/2=1a2sec2θdθsec3θ= \int_{}^{}{\frac{a\sec^{2}\theta d\theta}{a^{3}(\sec^{2}\theta)^{3/2}} = \frac{1}{a^{2}}\int_{}^{}\frac{\sec^{2}\theta d\theta}{\sec^{3}\theta}} I=1a2dθsecθ=1a2cosθdθ\Rightarrow I = \frac{1}{a^{2}}\int_{}^{}{\frac{d\theta}{\sec\theta} = \frac{1}{a^{2}}\int_{}^{}{\cos\theta ⥂ d\theta}}I=1a2sinθ+cI = \frac{1}{a^{2}}\sin\theta + c

\Rightarrow xa2(x2+a2)1/2\frac{x}{a^{2}(x^{2} + a^{2})^{1/2}} + c