Solveeit Logo

Question

Question: \[\int_{}^{}\frac{dx}{5 + 4\cos x} =\]...

dx5+4cosx=\int_{}^{}\frac{dx}{5 + 4\cos x} =

A

23tan1(13tanx)+c\frac{2}{3}\tan^{- 1}\left( \frac{1}{3}\tan x \right) + c

B

13tan1(13tanx)+c\frac{1}{3}\tan^{- 1}\left( \frac{1}{3}\tan x \right) + c

C

23tan1(13tanx2)+c\frac{2}{3}\tan^{- 1}\left( \frac{1}{3}\tan\frac{x}{2} \right) + c

D

13tan1(13tanx2)+c\frac{1}{3}\tan^{- 1}\left( \frac{1}{3}\tan\frac{x}{2} \right) + c

Answer

23tan1(13tanx2)+c\frac{2}{3}\tan^{- 1}\left( \frac{1}{3}\tan\frac{x}{2} \right) + c

Explanation

Solution

If a>b,a > b, then

dxa+bcosx=2a2b2.tan1(aba+btanx2)+cdx5+4cosx=23tan1(13tanx2)+c\int_{}^{}\frac{dx}{a + b\cos x} = \frac{2}{\sqrt{a^{2} - b^{2}}}.\tan^{- 1}\left( \sqrt{\frac{a - b}{a + b}}\tan\frac{x}{2} \right) + c\therefore\int_{}^{}{\frac{dx}{5 + 4\cos x} = \frac{2}{3}\tan^{- 1}\left( \frac{1}{3}\tan\frac{x}{2} \right) + c}.