Solveeit Logo

Question

Question: \[\int_{}^{}\frac{dx}{4\sin^{2}x + 5\cos^{2}x}\]...

dx4sin2x+5cos2x\int_{}^{}\frac{dx}{4\sin^{2}x + 5\cos^{2}x}

A

15tan1(2tanx5)+c\frac{1}{\sqrt{5}}\tan^{- 1}\left( \frac{2\tan x}{\sqrt{5}} \right) + c

B

15tan1(tanx5)+c\frac{1}{\sqrt{5}}\tan^{- 1}\left( \frac{\tan x}{\sqrt{5}} \right) + c

C

125tan1(2tanx5)+c\frac{1}{2\sqrt{5}}\tan^{- 1}\left( \frac{2\tan x}{\sqrt{5}} \right) + c

D

None of these

Answer

125tan1(2tanx5)+c\frac{1}{2\sqrt{5}}\tan^{- 1}\left( \frac{2\tan x}{\sqrt{5}} \right) + c

Explanation

Solution

sec2xdx4tan2x+5\int \frac { \sec ^ { 2 } x d x } { 4 \tan ^ { 2 } x + 5 } (Put2tanx=t2sec2xdx=dt)\left( \begin{aligned} & \text{Put}2\tan x = t \\ & 2\sec^{2}xdx = dt \end{aligned} \right)

12dtt2+(5)2=125tan1(2tanx5)+c\Rightarrow \frac{1}{2}\int_{}^{}\frac{dt}{t^{2} + (\sqrt{5})^{2}} = \frac{1}{2\sqrt{5}}\tan^{- 1}\left( \frac{2\tan x}{\sqrt{5}} \right) + c