Solveeit Logo

Question

Question: \(\int_{}^{}\frac{dx}{4\sin^{2}x + 4\sin x.\cos x + 5\cos^{2}x}\) equals...

dx4sin2x+4sinx.cosx+5cos2x\int_{}^{}\frac{dx}{4\sin^{2}x + 4\sin x.\cos x + 5\cos^{2}x} equals

A

tan1(tanx+12)+c\tan^{- 1}\left( \tan x + \frac{1}{2} \right) + c

B

14tan1(tanx+12)+c\frac{1}{4}\tan^{- 1}\left( \tan x + \frac{1}{2} \right) + c

C

4tan1(tanx+12)+c4\tan^{- 1}\left( \tan x + \frac{1}{2} \right) + c

D

None of these

Answer

14tan1(tanx+12)+c\frac{1}{4}\tan^{- 1}\left( \tan x + \frac{1}{2} \right) + c

Explanation

Solution

I=dx4sin2x+4sinx.cosx+5cos2x\int_{}^{}\frac{dx}{4\sin^{2}x + 4\sin x.\cos x + 5\cos^{2}x} =sec2xdx4tan2x+5+4tanx= \int_{}^{}\frac{\sec^{2}xdx}{4\tan^{2}x + 5 + 4\tan x} =14sec2xdx(tanx+12)2+1= \frac{1}{4}\int_{}^{}\frac{\sec^{2}xdx}{\left( \tan x + \frac{1}{2} \right)^{2} + 1}

Put tanx+12=t\tan x + \frac{1}{2} = t sec2xdx=dt=14dtt2+1=14tan1t+c\Rightarrow \sec^{2}xdx = dt = \frac{1}{4}\int_{}^{}\frac{dt}{t^{2} + 1} = \frac{1}{4}\tan^{- 1}t + c ⇒ I =14tan1(tanx+12)+c= \frac{1}{4}\int_{}^{}{\tan^{- 1}\left( \tan x + \frac{1}{2} \right)} + c.