Solveeit Logo

Question

Question: \[\int_{}^{}\frac{dx}{3 + 4\cos x} =\]...

dx3+4cosx=\int_{}^{}\frac{dx}{3 + 4\cos x} =

A

17log(tan(x/2)7tan(x/2)+7)+c\frac{1}{\sqrt{7}}\log\left( \frac{\tan(x/2) - \sqrt{7}}{\tan(x/2) + \sqrt{7}} \right) + c

B

17log(tan(x/2)+7tan(x/2)7)+c\frac{1}{\sqrt{7}}\log\left( \frac{\tan(x/2) + \sqrt{7}}{\tan(x/2) - \sqrt{7}} \right) + c

C

17log(7+tan(x/2)7tan(x/2))+c\frac{1}{\sqrt{7}}\log\left( \frac{\sqrt{7} + \tan(x/2)}{\sqrt{7} - \tan(x/2)} \right) + c

D

17log(7tan(x/2)7+tan(x/2))+c\frac{1}{\sqrt{7}}\log\left( \frac{\sqrt{7} - \tan(x/2)}{\sqrt{7} + \tan(x/2)} \right) + c

Answer

17log(tan(x/2)+7tan(x/2)7)+c\frac{1}{\sqrt{7}}\log\left( \frac{\tan(x/2) + \sqrt{7}}{\tan(x/2) - \sqrt{7}} \right) + c

Explanation

Solution

If b>ab > a then,

dxa+bcosx=1b2a2log[batanx2+b+abatanx2b+a]+c\int_{}^{}\frac{dx}{a + b\cos x} = \frac{1}{\sqrt{b^{2} - a^{2}}}\log\left\lbrack \frac{\sqrt{b - a}\tan\frac{x}{2} + \sqrt{b + a}}{\sqrt{b - a}\tan\frac{x}{2} - \sqrt{b + a}} \right\rbrack + c I=17log(tanx2+7tanx27)+c\Rightarrow I = \frac{1}{\sqrt{7}}\log\left( \frac{\tan\frac{x}{2} + \sqrt{7}}{\tan\frac{x}{2} - \sqrt{7}} \right) + c