Solveeit Logo

Question

Question: \(\int_{}^{}\frac{dx}{2x^{2} + x + 1}\) equals :...

dx2x2+x+1\int_{}^{}\frac{dx}{2x^{2} + x + 1} equals :

A

27tan1(4x+17)+C\frac{2}{\sqrt{7}}\tan^{- 1}\left( \frac{4x + 1}{\sqrt{7}} \right) + C

B

127tan1(4x+17)+C\frac{1}{2\sqrt{7}}\tan^{- 1}\left( \frac{4x + 1}{\sqrt{7}} \right) + C

C

12tan1(4x+17)+C\frac{1}{2}\tan^{- 1}\left( \frac{4x + 1}{\sqrt{7}} \right) + C

D

None

Answer

27tan1(4x+17)+C\frac{2}{\sqrt{7}}\tan^{- 1}\left( \frac{4x + 1}{\sqrt{7}} \right) + C

Explanation

Solution

I = 12\frac { 1 } { 2 }

I = 12\frac { 1 } { 2 } dx(x+14)2+(74)2\int \frac { d x } { \left( x + \frac { 1 } { 4 } \right) ^ { 2 } + \left( \frac { \sqrt { 7 } } { 4 } \right) ^ { 2 } }

I = 1×42×7\frac { 1 \times 4 } { 2 \times \sqrt { 7 } } tan–1(x+1474)\left( \frac { x + \frac { 1 } { 4 } } { \frac { \sqrt { 7 } } { 4 } } \right) + C

I = 27\frac { 2 } { \sqrt { 7 } } tan–1(4x+17)\left( \frac { 4 x + 1 } { \sqrt { 7 } } \right)+ C