Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{dx}{1 + \cot x} =}\]...

dx1+cotx=\int_{}^{}{\frac{dx}{1 + \cot x} =}

A

12x+12logsinx+cosx+c\frac{1}{2}x + \frac{1}{2}\log|\sin x + \cos x| + c

B

12x12logsinx+cosx+c\frac{1}{2}x - \frac{1}{2}\log|\sin x + \cos x| + c

C

12x+12logsinx+cosx+c\frac{- 1}{2}x + \frac{1}{2}\log|\sin x + \cos x| + c

D

None of these

Answer

12x12logsinx+cosx+c\frac{1}{2}x - \frac{1}{2}\log|\sin x + \cos x| + c

Explanation

Solution

Here,I=dx1+cotx=dx1+cosxsinx=sinxsinx+cosxdxI = \int_{}^{}\frac{dx}{1 + \cot x} = \int_{}^{}{\frac{dx}{1 + \frac{\cos x}{\sin x}} = \int_{}^{}\frac{\sin x}{\sin x + \cos x}dx}Let sinx=Mddx(sinx+cosx)+N(sinx+cosx)\sin x = M\frac{d}{dx}(\sin x + \cos x) + N(\sin x + \cos x)

\Rightarrow sinx=M(cosxsinx)+N(sinx+cosx)\sin x = M(\cos x - \sin x) + N(\sin x + \cos x) Comparing the coefficients of sinx\sin x and cosx\cos x of both the sides, we have 1=M+Nand0=M+N1 = - M + N\text{and}0 = M + NSolving these equations, we have M=12andN=12M = \frac{- 1}{2}\text{and}N = \frac{1}{2}

\therefore sinx=12(cosxsinx)+12(sinx+cosx)\sin x = - \frac{1}{2}(\cos x - \sin x) + \frac{1}{2}(\sin x + \cos x) Hence,I=12(cosxsinx)+12(sinx+cosx)sinx+cosxdx=12cosxsinxsinx+cosxdx+121dx=12logsinx+cosx+12x+c.I = \int_{}^{}\frac{\frac{- 1}{2}(\cos x - \sin x) + \frac{1}{2}(\sin x + \cos x)}{\sin x + \cos x}dx = - \frac{1}{2}\int_{}^{}\frac{\cos x - \sin x}{\sin x + \cos x}dx + \frac{1}{2}\int_{}^{}{1dx} = - \frac{1}{2}\log|\sin x + \cos x| + \frac{1}{2}x + c.