Question
Question: \[\int_{}^{}{\frac{dx}{1 + \cot x} =}\]...
∫1+cotxdx=
A
21x+21log∣sinx+cosx∣+c
B
21x−21log∣sinx+cosx∣+c
C
2−1x+21log∣sinx+cosx∣+c
D
None of these
Answer
21x−21log∣sinx+cosx∣+c
Explanation
Solution
Here,I=∫1+cotxdx=∫1+sinxcosxdx=∫sinx+cosxsinxdxLet sinx=Mdxd(sinx+cosx)+N(sinx+cosx)
⇒ sinx=M(cosx−sinx)+N(sinx+cosx) Comparing the coefficients of sinx and cosx of both the sides, we have 1=−M+Nand0=M+NSolving these equations, we have M=2−1andN=21
∴ sinx=−21(cosx−sinx)+21(sinx+cosx) Hence,I=∫sinx+cosx2−1(cosx−sinx)+21(sinx+cosx)dx=−21∫sinx+cosxcosx−sinxdx+21∫1dx=−21log∣sinx+cosx∣+21x+c.