Solveeit Logo

Question

Question: \[\int_{}^{}\frac{dx}{1 + 3\sin^{2}x} =\]...

dx1+3sin2x=\int_{}^{}\frac{dx}{1 + 3\sin^{2}x} =

A

13tan1(3tan2x)+c\frac{1}{3}\tan^{- 1}(3\tan^{2}x) + c

B

12tan1(2tanx)+c\frac{1}{2}\tan^{- 1}(2\tan x) + c

C

tan1(tanx)+c\tan^{- 1}(\tan x) + c

D

None of these

Answer

12tan1(2tanx)+c\frac{1}{2}\tan^{- 1}(2\tan x) + c

Explanation

Solution

sec2xdxsec2x+3tan2x=sec2xdx1+4tan2x\int_{}^{}\frac{\sec^{2}xdx}{\sec^{2}x + 3\tan^{2}x} = \int_{}^{}\frac{\sec^{2}xdx}{1 + 4\tan^{2}x}Put 2tanx=t2\tan x = t

sec2xdx=dt2\sec^{2}xdx = \frac{dt}{2}

I=12dt1+t2=12tan1t+c\therefore I = \frac{1}{2}\int_{}^{}{\frac{dt}{1 + t^{2}} = \frac{1}{2}\tan^{- 1}t + c}

\Rightarrow I=12tan1(2tanx)+cI = \frac{1}{2}\tan^{- 1}(2\tan x) + c.