Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{d\theta}{\sin\theta\cos^{3}\theta} =}\]...

dθsinθcos3θ=\int_{}^{}{\frac{d\theta}{\sin\theta\cos^{3}\theta} =}

A

logtanθ+tan2θ+c{logtan}\theta + \tan^{2}\theta + c

B

logtanθ12tan2θ+c{logtan}\theta - \frac{1}{2}\tan^{2}\theta + c

C

logtanθ+12tan2θ+c{logtan}\theta + \frac{1}{2}\tan^{2}\theta + c

D

1cos1x.1x2dx=\int_{}^{}{\frac{1}{\cos^{- 1}x.\sqrt{1 - x^{2}}}dx =}

Answer

logtanθ+12tan2θ+c{logtan}\theta + \frac{1}{2}\tan^{2}\theta + c

Explanation

Solution

x2x(2logxx)dx=\int_{}^{}{\frac{x - 2}{x(2\log x - x)}dx} =

log(2logxx)+c\log(2\log x - x) + c