Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{\cos x}{\sin^{2}x + 4\sin x + 5}dx}\)equals...

cosxsin2x+4sinx+5dx\int_{}^{}{\frac{\cos x}{\sin^{2}x + 4\sin x + 5}dx}equals

A

tan1(sinx)+c\tan^{- 1}(\sin x) + c

B

tan1(sinx+2)+c\tan^{- 1}(\sin x + 2) + c

C

tan1(sinx+1)+c\tan^{- 1}(\sin x + 1) + c

D

None of these

Answer

tan1(sinx+2)+c\tan^{- 1}(\sin x + 2) + c

Explanation

Solution

I =cosxsin2x+4sinx+5dx=cosx(sinx+2)2+1dx\int_{}^{}{\frac{\cos x}{\sin^{2}x + 4\sin x + 5}dx} = \int_{}^{}\frac{\cos x}{(\sin x + 2)^{2} + 1}dx

Put sinx+2=tcosxdx=dt\sin x + 2 = t \Rightarrow \cos xdx = dt

I = dtt2+1\int_{}^{}\frac{dt}{t^{2} + 1} =tan1t+c=tan1(sinx+2)+c= \tan^{- 1}t + c = \tan^{- 1}(\sin x + 2) + c.