Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\cos x}{(1 + \sin x)(2 + \sin x)}dx =}\]...

cosx(1+sinx)(2+sinx)dx=\int_{}^{}{\frac{\cos x}{(1 + \sin x)(2 + \sin x)}dx =}

A

log[(1+sinx)(2+sinx)]+c\log\lbrack(1 + \sin x)(2 + \sin x)\rbrack + c

B

log[2+sinx1+sinx]+c\log\left\lbrack \frac{2 + \sin x}{1 + \sin x} \right\rbrack + c

C

log[1+sinx2+sinx]+c\log\left\lbrack \frac{1 + \sin x}{2 + \sin x} \right\rbrack + c

D

None of these

Answer

log[1+sinx2+sinx]+c\log\left\lbrack \frac{1 + \sin x}{2 + \sin x} \right\rbrack + c

Explanation

Solution

Put sinx=t\sin x = t cosxdx=dt\Rightarrow \cos xdx = dt

cosxdx(1+sinx)(2+sinx)=dt(1+t)(2+t)=[1t+11t+2]dt\int \frac { \cos x d x } { ( 1 + \sin x ) ( 2 + \sin x ) } = \int \frac { d t } { ( 1 + t ) ( 2 + t ) } = \int \left[ \frac { 1 } { t + 1 } - \frac { 1 } { t + 2 } \right] d t =log(t+1)log(t+2)+c= \log(t + 1) - \log(t + 2) + c =log[t+1t+2]+c\log\left\lbrack \frac{t + 1}{t + 2} \right\rbrack + c =log[1+sinx2+sinx]+c= \log \left[ \frac { 1 + \sin x } { 2 + \sin x } \right] + c