Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\cos 4x - 1}{\cot x - \tan x}\)dx is equal to –...

cos4x1cotxtanx\int_{}^{}\frac{\cos 4x - 1}{\cot x - \tan x}dx is equal to –

A

–1/2 cos 4x + c

B

–1/4 cos 4x + c

C

–1/2 sin 2x + c

D

None of these

Answer

None of these

Explanation

Solution

cos4x1cotxtanx\int \frac { \cos 4 x - 1 } { \cot x - \tan x }dx =2sin22xcos2xsinxcosx\int_{}^{}\frac{- 2\sin^{2}2x}{\frac{\cos 2x}{\sin x\cos x}}dx

= –sin2x(1cos22x)cos2x\int \frac { \sin 2 x \left( 1 - \cos ^ { 2 } 2 x \right) } { \cos 2 x }dx

Put cos 2x = t Ž – sin 2x dx = dt2\frac{dt}{2}

= 12\frac { 1 } { 2 } 1t2t\int_{}^{}\frac{1 - t^{2}}{t}dt = 12\frac{1}{2}log t – t24\frac{t^{2}}{4} + c

= 12\frac{1}{2}log cos 2x – cos22x4\frac{\cos^{2}2x}{4} + c.