Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\cos 2x - \cos 2\theta}{\cos x - \cos\theta}\)dx =...

cos2xcos2θcosxcosθ\int_{}^{}\frac{\cos 2x - \cos 2\theta}{\cos x - \cos\theta}dx =

A

2(sin x + x cos q) + c

B

2(sin x – x cos q) + c

C

2 (sin x + 2x cos q) + c

D

None of these

Answer

2(sin x + x cos q) + c

Explanation

Solution

cos2xcos2θcosxcosθdx\int \frac { \cos 2 x - \cos 2 \theta } { \cos x - \cos \theta } d x

= (2cos2x1)(2cos2θ1)cosxcosθdx\int \frac { \left( 2 \cos ^ { 2 } x - 1 \right) - \left( 2 \cos ^ { 2 } \theta - 1 \right) } { \cos x - \cos \theta } d x = 2cos2xcos2θcosxcosθdx2 \int \frac { \cos ^ { 2 } x - \cos ^ { 2 } \theta } { \cos x - \cos \theta } d x

= 2(cosxcosθ)dx2 \int ( \cos x - \cos \theta ) d x

= 2(sin x + x cos q) + c