Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{3x^{2}}{x^{6} + 1}dx =}\)...

3x2x6+1dx=\int_{}^{}{\frac{3x^{2}}{x^{6} + 1}dx =}

A

log(x6+1)+c\log(x^{6} + 1) + c

B

tan1(x3)+c\tan^{- 1}(x^{3}) + c

C

3tan1(x3)+c3\tan^{- 1}(x^{3}) + c

D

None of these

Answer

log(x6+1)+c\log(x^{6} + 1) + c

Explanation

Solution

Put

acos2x+bsin2x=ta \cos ^ { 2 } x + b \sin ^ { 2 } x = t ex+ce^{- x} + c

Then ex+c- e^{- x} + c

cotxtanxsec2x16mudx=\int_{}^{}\frac{\cot x\tan x}{\sec^{2}x - 1}\mspace{6mu} dx =.