Solveeit Logo

Question

Question: \[\int_{}^{}\frac{3x + 1}{(x - 2)^{2}(x + 2)} =\]...

3x+1(x2)2(x+2)=\int_{}^{}\frac{3x + 1}{(x - 2)^{2}(x + 2)} =

A

516logx+2x2+74(x2)+c\frac{\mathbf{5}}{\mathbf{16}}\mathbf{\log}\left| \frac{\mathbf{x + 2}}{\mathbf{x - 2}} \right|\mathbf{+}\frac{\mathbf{7}}{\mathbf{4(x - 2)}}\mathbf{+ c}

B

516logx2x+2+74(x2)+c\frac{\mathbf{5}}{\mathbf{16}}\mathbf{\log}\left| \frac{\mathbf{x}\mathbf{-}\mathbf{2}}{\mathbf{x + 2}} \right|\mathbf{+}\frac{\mathbf{7}}{\mathbf{4(x}\mathbf{-}\mathbf{2)}}\mathbf{+ c}

C

165logx2x+274(x2)+c\frac{\mathbf{16}}{\mathbf{5}}\mathbf{\log}\left| \frac{\mathbf{x}\mathbf{-}\mathbf{2}}{\mathbf{x + 2}} \right|\mathbf{-}\frac{\mathbf{7}}{\mathbf{4(x}\mathbf{-}\mathbf{2)}}\mathbf{+ c}

D

None of these

Answer

516logx2x+2+74(x2)+c\frac{\mathbf{5}}{\mathbf{16}}\mathbf{\log}\left| \frac{\mathbf{x}\mathbf{-}\mathbf{2}}{\mathbf{x + 2}} \right|\mathbf{+}\frac{\mathbf{7}}{\mathbf{4(x}\mathbf{-}\mathbf{2)}}\mathbf{+ c}

Explanation

Solution

We have, 3x+1(x2)2(x+2)=A(x2)+B(x2)2+C(x+2)3x+1=A(x2)(x+2)+B(x+2)+C(x2)2\frac{3x + 1}{(x - 2)^{2}(x + 2)} = \frac{A}{(x - 2)} + \frac{B}{(x - 2)^{2}} + \frac{C}{(x + 2)}3x + 1 = A(x - 2)(x + 2) + B(x + 2) + C(x - 2)^{2} ......(i)

Putting x=2and-2x = 2\text{and-2}successively in equation (i), we get

B=74,C=516B = \frac{7}{4},C = \frac{- 5}{16}

Now, we put x=0x = 0 and get A=516A = \frac{5}{16}

3x+1(x2)2(x+2)dx\int_{}^{}\frac{3x + 1}{(x - 2)^{2}(x + 2)}dx =516dxx2+74dx(x2)2516dxx+2=516log(x2)741(x2)516log(x+2)+c= \frac{5}{16}\int_{}^{}{\frac{dx}{x - 2} + \frac{7}{4}\int_{}^{}{\frac{dx}{(x - 2)^{2}}\frac{- 5}{16}\int_{}^{}\frac{dx}{x + 2}}} = \frac{5}{16}\log(x - 2) - \frac{7}{4}\frac{1}{(x - 2)} - \frac{5}{16}\log(x + 2) + c =516logx2x+274(x2)+c= \frac{5}{16}\log\left| \frac{x - 2}{x + 2} \right| ⥂ - \frac{7}{4(x - 2)} + c