Question
Question: \[\int_{}^{}{\frac{2\sin 2\theta - \cos\theta}{6 - \cos^{2}\theta - 4\sin\theta}d\theta =}\]...
∫6−cos2θ−4sinθ2sin2θ−cosθdθ=
A
2log∣sin2θ−4sinθ+5∣+7tan−1(sinθ−2)+c
B
2log∣sin2θ−4sinθ+5∣−7tan−1(sinθ−2)+c
C
−2log∣sin2θ−4sinθ+5∣+7tan−1(sinθ−2)+c
D
−2log∣sin2θ−4sinθ+5∣−7tan−1(sinθ−2)+c
Answer
2log∣sin2θ−4sinθ+5∣+7tan−1(sinθ−2)+c
Explanation
Solution
I=∫6−(1−sin2θ)−4sinθ2(2sinθcosθ)−cosθdθ⇒I=∫sin2θ−4sinθ+5(4sinθ−1)cosθdθ
Putsinθ=t⇒cosθdθ=dt, ∴I=∫t2−4t+54t−1dt
Let 4t−1=Mdtd(t2−4t+5)+N ⇒4t−1=M(2t−4)+N
Comparing the coefficient of t and constant terms on both side, then M=2,N=7 ∴I=∫t2−4t+52(2t−4)+7dt
⇒I=2∫t2−4t+52t−4dt+∫t2−4t+57dt⇒I=2log∣t2−4t+5∣+7∫(t−2)2+1dt⇒I=2log∣t2−4t+5∣+7tan−1(t−2)+c=2log∣sin2θ−4sinθ+5∣+7tan−1(sinθ−2)+c