Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{1}{x}\sec^{2}(\log x)dx =}\)...

1xsec2(logx)dx=\int_{}^{}{\frac{1}{x}\sec^{2}(\log x)dx =}

A

tan(logx)+c\tan(\log x) + c

B

log(secx)+c\log(\sec x) + c

C

log(tanx)+c\log(\tan x) + c

D

sec(logx)6mu.6mutan(logx)+c\sec(\log x)\mspace{6mu}.\mspace{6mu}\tan(\log x) + c

Answer

log(secx)+c\log(\sec x) + c

Explanation

Solution

1logacos1ax+c\frac{1}{\log a}\cos^{- 1}a^{x} + c.