Solveeit Logo

Question

Question: \(\int_{}^{}\frac{1}{x^{2}}(2x + 1)^{3}dx\) =...

1x2(2x+1)3dx\int_{}^{}\frac{1}{x^{2}}(2x + 1)^{3}dx =

A

4x2 + 12x + 6logx – 1x\frac{1}{x} + c

B

4x2 + 12x – 6logx – 2x\frac{2}{x} + c

C

2x2 + 8x + 3logx – 2x\frac{2}{x} + c

D

8x2 + 6x + 6logx+2x+c\text{8}\text{x}^{2}\text{ + 6x + 6logx} + \frac{2}{x} + c

Answer

4x2 + 12x + 6logx – 1x\frac{1}{x} + c

Explanation

Solution

(2x + 1)3 dx =(8x3+1+12x2+6x)x2\int_{}^{}\frac{(8x^{3} + 1 + 12x^{2} + 6x)}{x^{2}} dx

= (8x+12+6x+1x2)\int \left( 8 x + 12 + \frac { 6 } { x } + \frac { 1 } { x ^ { 2 } } \right) dx = 4x2 + 12x + 6 logx – 1x\frac{1}{x} +c