Solveeit Logo

Question

Question: \(\int_{}^{}\frac{1}{\sqrt{\tan^{2}\theta + 2}}\) is equal to...

1tan2θ+2\int_{}^{}\frac{1}{\sqrt{\tan^{2}\theta + 2}} is equal to

A

lntan2θ1+tan2θ+2+c|\sqrt{\tan^{2}\theta - 1} + \sqrt{\tan^{2}\theta + 2}| + c

B

lntan2θ1tan2θ+2+c|\sqrt{\tan^{2}\theta - 1} - \sqrt{\tan^{2}\theta + 2}| + c

C

ln tan2θ1+tan2θ1+c|\tan^{2}\theta - 1 + \sqrt{\tan^{2}\theta - 1}| + c

D

None of these

Answer

lntan2θ1+tan2θ+2+c|\sqrt{\tan^{2}\theta - 1} + \sqrt{\tan^{2}\theta + 2}| + c

Explanation

Solution

Let tan2 q – 1 = t2

I = = ln | t + t2+3\sqrt{t^{2} + 3}| + c