Solveeit Logo

Question

Question: \(\int_{}^{}\frac{1}{\sqrt{\sin^{3}x\sin(x + a)}}\) dx is equal to –...

1sin3xsin(x+a)\int_{}^{}\frac{1}{\sqrt{\sin^{3}x\sin(x + a)}} dx is equal to –

A

cosa+cotxsina+c\sqrt{\cos a + \cot x\sin a} + c

B

cosa+cotxsina+c\sqrt{\cos a + \cot x\sin a} + c

C

cosa+cotxsina+c\sqrt{\cos a + \cot x\sin a} + c

D

cosa+cotxsina+c\sqrt{\cos a + \cot x\sin a} + c

Answer

cosa+cotxsina+c\sqrt{\cos a + \cot x\sin a} + c

Explanation

Solution

We have 1sin3xsin(x+a)\int_{}^{}\frac{1}{\sqrt{\sin^{3}x\sin(x + a)}}dx

= 1sin3x(sinxcosa+cosxsina)\int_{}^{}\frac{1}{\sqrt{\sin^{3}x(\sin x\cos a + \cos x\sin a)}}dx

= 1sin4x(cosa+cotxsina)\int \frac { 1 } { \sqrt { \sin ^ { 4 } x ( \cos a + \cot x \sin a ) } }dx

=cosec2xcosa+cotxsina\int \frac { \operatorname { cosec } ^ { 2 } x } { \sqrt { \cos a + \cot x \sin a } }dx

=1cosa+cotxsina\int_{}^{}\frac{1}{\sqrt{\cos a + \cot x\sin a}}d (cos a + cot x sin a)

=1t\int_{}^{}\frac{1}{\sqrt{t}}dt, where t = cos a + cot x sin a

= – 2sina\frac{2}{\sin a} cosa+cotxsina+c\sqrt{\cos a + \cot x\sin a} + c.

Hence (1) is the correct answer.