Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{1}{\sqrt{1 + \cos x}}\mspace{6mu} dx =}\]...

11+cosx6mudx=\int_{}^{}{\frac{1}{\sqrt{1 + \cos x}}\mspace{6mu} dx =}

A

2log(secx2+tanx2)+K\sqrt{2}\log\left( \sec\frac{x}{2} + \tan\frac{x}{2} \right) + K

B

12log(secx2+tanx2)+K\frac{1}{\sqrt{2}}\log\left( \sec\frac{x}{2} + \tan\frac{x}{2} \right) + K

C

log(secx2+tanx2)+K\log\left( \sec\frac{x}{2} + \tan\frac{x}{2} \right) + K

D

cos2x1cos2x+1dx=\int_{}^{}{\frac{\cos 2x - 1}{\cos 2x + 1}dx =}

Answer

log(secx2+tanx2)+K\log\left( \sec\frac{x}{2} + \tan\frac{x}{2} \right) + K

Explanation

Solution

13(1tan2x)3/2+c\frac{1}{3}(1 - \tan^{2}x)^{3/2} + c